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Abstract

The effects of boundary conditions on the mode count and modal density of one- and two-dimensional
structural systems, beams and plates, respectively, are investigated by using the wavenumber integration
method. Bending vibrations are examined first for a single beam. In this case it is demonstrated that the
average mode count is reduced by between 0 and 1 for each boundary constraint, depending on the type of
boundary conditions. For more generalised mass and stiffness constraints a frequency-dependent
coefficient, which need not lie between 0 and 1, is obtained. The effects of line constraints on the mode
count of two-dimensional systems are similar to the equivalent one-dimensional constraints but they are
always frequency dependent. Then the mode count of systems of multiple collinear beams and coplanar
plates is studied. It is found that an intermediate constraint has the same effect on the average mode count
as the same type of constraint applied at an end of the system. The modal density is largely independent of
boundary conditions for one-dimensional systems although there are exceptions, while it is dependent on
boundary conditions for two-dimensional systems. The results are compared with those from previously
published formulae for natural frequencies and with results from finite element method (FEM) analysis.
Inclusion of the effect of the boundary conditions in statistical energy analysis (SEA) estimations will result
in improved agreements with both analytical and numerical results.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The frequency distribution of normal modes in systems of acoustical cavities has been obtained
many years ago by various authors [1–6]. This distribution is usually expressed in terms of the
mode count, that is the number of the normal modes below a given frequency. The asymptotic
expressions for the mode count of an acoustical system were derived by several methods, among
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which the wavenumber space integration, given by Courant and Hilbert [7], is a general technique
for finding the distribution of eigenvalues of dynamic systems, not just for acoustical systems. The
average number of modes in a unit frequency interval is called the modal density and is clearly
related to the mode count. By using the concept of the modal density, the response of acoustic
cavities can be treated in a statistical way. This concept has been extended to structure-borne
vibrations, and is widely used in statistical energy analysis (SEA), developed amongst others by
Lyon [8]. SEA is used for analyses of the vibrations and acoustics of complicated structures at
high frequencies.
In order to apply SEA to a complicated structural response problem, it is necessary to know

the modal density of the components of the structure under consideration. The evaluation of the
mode count and modal density involves the determination of the frequency equation for the
structure from the appropriate equation of motion. The resonance frequencies are then summed
over all possible modes of vibration. This yields an expression for the mode count in terms of
frequency. Differentiation of the expression for the mode count with respect to frequency then
yields the expression for the modal density. For a simple vibrating structure such as a rectangular
plate, the asymptotic function of the distribution of eigenfrequencies has been analysed by
Courant and Hilbert [7] based on the k-space integration technique. However, for a composite
structure, this type of mathematical solution is usually impracticable.
The mode count and modal density of basic structural elements such as beams, plates and shells

were investigated several decades ago [9–12]. Hart and Shah [11] gave a systematic discussion of
the modal density of many basic structural elements. Cremer et al. [13] and Lyon [8] also gave
expressions for the mode count and modal density of these basic elements of structures. Langley
[14] discussed the modal density of anisotropic structural components. All these results have been
used extensively in the applications of SEA for many years. In general, these expressions are based
on the forms in which the modal density is taken to be independent of the boundary conditions
and is proportional to the size of the system. Hence, the mode count of a structural system is
proportional to the length for a one-dimensional structure, to the area for a two-dimensional one
and to the volume for a three-dimensional one. For more complicated structures, the simple
additive property, that the modal density of the complicated system is equal to sum of the modal
densities of its components, is utilised.
The effect of boundary conditions on the mode count and modal density has received

comparatively little attention, being seen as of secondary importance. In the expressions for
evaluating the mode count of SEA subsystems, presented by Lyon and DeJong [15], the effect of
boundary conditions on the mode count and modal density was indicated in terms of a coefficient
dBC that is indicated as usually constant for one-dimensional subsystems and usually assumed to
be zero for two- and three-dimensional subsystems. However, for an acoustic cavity with rigid
walls, the mode count is given by Morse and Bolt [6]

Nð f Þ ¼
4pV

3c3
f 3 þ

pS

4c2
f 2 þ

L

8c
f ; ð1Þ

where V is the volume, S is the total surface area, L is the total length of edges, c is the sound
speed in air and f is frequency. This expression was first obtained by Maa [3]. For zero pressure
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boundary conditions the above expression becomes

Nð f Þ ¼
4pV

3c3
f 3 �

pS

4c2
f 2 þ

L

8c
f ; ð2Þ

which was given by Roe [5]. This demonstrates that the boundary conditions do have effects on
the mode count, and from the derivatives of Eqs. (1) and (2), also on the modal density although
clearly as frequency increases, Nð f Þ becomes dominated by the first term, proportional to the
volume. The types of boundary conditions, which may be present on structural systems, are more
diverse and therefore require a more extensive analysis.
More recently, Bogomolny and Hugues [16] and Bertelsen et al. [17] have given expressions for

the mode count of a rectangular plate under three standard boundary conditions: free, simple
support and clamped on all edges, based on the rigorous analysis by Vasil’ev [18]. In their
expressions, there is a perimeter term, which corresponds to dBC as given in Ref. [15]. However,
for one-dimensional systems and the rectangular plate under other combinations of boundary
conditions, this perimeter term (or dBC) is still not generally available.
Some elements of the boundary condition terms for structural systems are therefore already to

be found in the literature. This paper presents a systematic approach for the consideration
of the effects of boundary conditions on the mode count and modal density of structural
systems. It starts with one-dimensional systems, single and multiple beams, and extends this
approach to the case of two-dimensional systems, i.e., plates. An approximate method
is used based on k-space integration [7]. Since it is clearly impossible to obtain the details for
all the various boundary conditions that occur in practice, only the most basic and typical cases
will be discussed here. The approximate effects due to various types of boundary condition are
initially identified for a single one-dimensional system. The effects due to an intermediate
constraint for a multiple collinear beam system are then studied. It is shown, for this system, that
an intermediate constraint has the same effect on the average mode count as that type of
constraint applied at an end. For two-dimensional systems, the main work carried out concerns a
rectangular plate. The effects of intermediate line constraints are also discussed. The conclusions
drawn from the studies on the mode count are then used to indicate the effect on the modal
density.
Although the boundary conditions of a one-dimensional system are found generally to have

negligible effect on the modal density, their inclusion here assists in the interpretation of the
two-dimensional case.

2. Average mode count

Before giving a detailed discussion of the mode count, it is instructive to introduce the concept
of the average mode count. The mode count is the number of modes below a certain frequency. It
consists in reality of discrete numbers. If it is plotted against frequency or wavenumber, a
‘‘staircase’’ curve appears as shown in Fig. 1. For frequencies just below the nth mode, the mode
count is n � 1; just above the natural frequency it is n: A continuous function that approximates
the average of the staircase function is more useful in practice (see Fig. 1). This average function
distributes the mode count along the wavenumber axis (or frequency axis). The average mode
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count can be represented by a curve NðkÞ that passes through the points

NðknÞ ¼ n � 1
2

ð3Þ

at the resonance frequencies. The average mode count can also be seen as the average number of
modes below a certain frequency occurring within an ensemble of notionally similar structures.
The derivative of this average mode count with respect to frequency is the modal density, which is
also a statistical quantity. In the remainder of this paper, when a mode count is mentioned, it is
normally used to mean the average mode count function, not the discrete mode count.

3. Single one-dimensional system

3.1. Use of phase-closure principle

Lyon and DeJong [15] give an expression for the mode count of the one-dimensional system in
terms of wavenumber:

NðkÞ ¼
kL

p
þ dBC ð4Þ

where dBC is dependent on the boundary conditions (and, according to Lyon and DeJong, is
usually a constant of magnitude less than or equal to 1), L is the length of the one-dimensional
system and k is the wavenumber (¼ 2p=wavelength), which is related to frequency. For the
particular wave type being considered, such as bending or longitudinal waves, the dispersion
relation defines the frequency dependence of the wavenumber. No further details are given in
Ref. [15] of dBC ; indeed it is eliminated when Eq. (4) is differentiated with respect to k and
therefore has no relevance to the modal density. Nevertheless, it is worth exploring how dBC

depends on the type of boundary conditions present.
In a one-dimensional system, the natural modes may be represented as the superposition

of equal but opposite-going propagating waves. The natural modes occur when the total
phase change as the wave travels one complete circuit around the system is equal to
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an integral multiple of 2p:

2kL þ eL þ eR ¼ 2np; ð5Þ

where eL and eR are the phase change due to reflections at the boundaries at the left- and right-
hand ends, respectively, and n is an integer. This is well known as the phase-closure principle.
From a knowledge of the wavenumber–frequency relationship as well as the phase change when a
propagating wave impinges on each end-boundary of the system, the phase-closure principle can
be used to find the natural frequencies [19].
The wavenumber at the nth resonance is given by rearranging (5)

k ¼
np
L

�
eL þ eR

2L
ð6Þ

It can be seen that if eL and eR are constants, the wavenumber change Dk between two adjacent
modes is a constant, equal to p=L: If the natural modes of a one-dimensional system are plotted in
wavenumber space, as illustrated in Fig. 2, the boundary effects only influence the distance to the
origin. Each mode occupies a length of Dk ¼ p=L on the k axis. The mode count below a
wavenumber k; or a frequency o; can hence be obtained by finding the number of modes within
the length k: This is actually an integration in one-dimensional wavenumber space, which can be
expressed as

NðkÞ ¼

R k

0 dk

Dk
�

1

2
; ð7Þ

where NðkÞ is the average mode count. The term �1=2 is the same as that in Eq. (3).
In the following sections, the mode count of a single one-dimensional beam will be derived for

various boundary conditions. This will give explicitly the values of dBC :

3.2. Bending modes in a beam

For the flexural vibrations of a uniform Euler–Bernoulli beam, which have two coupling
degrees of freedom, four basic boundary conditions are considered. The phase changes due to
boundary conditions are given as follows [13]: for a free boundary condition, the phase change
due to reflection is �p=2; for a simple support, the phase change is p; for a fully fixed boundary, it
is again �p=2; while for a sliding boundary condition, it is 0.
Natural modes can be approximately found using the phase-closure principle when the

evanescent waves arriving at the boundaries are ignored. The natural modes of a free–free beam
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are governed by kL ¼ ðn � 3=2Þp; where n ¼ 3; 4;y and n ¼ 1; 2 correspond to k ¼ 0 to include
two rigid modes. The average mode count can therefore be given by

N ¼
kL

p
þ 1: ð8Þ

Changing the boundary condition at one end it is found that this becomes

N ¼
kL

p
þ
3

4
; free–sliding; ð9Þ

N ¼
kL

p
þ
1

4
; free–pinned; ð10Þ

N ¼
kL

p
; free–fixed: ð11Þ

Thus, compared with a free boundary, it can be seen that a sliding boundary adds to the mode
count by �1=4; a pinned (simple support) boundary adds �3=4 and a fixed boundary condition
adds �1 for bending vibrations. These results are found to apply to other combinations of
boundary conditions at the two ends [20].
The average mode count of one-dimensional systems in flexural vibrations can thus be obtained

by considering the mode count of a free–free beam and adding the effects of the boundary
conditions at the two ends. This can be given by

N ¼
kL

p
þ 1� dL � dR; ð12Þ

where dL and dR are 0, 1/4, 3/4, and 1 corresponding to the four boundary conditions discussed
above. These values are used to find the constants dBC described in Eq. (4),

dBC ¼ 1� dL � dR ð13Þ

which is indeed between 1 and �1 for the boundary conditions discussed above [15].
For longitudinal vibrations, it is found that each fixed boundary constraint adds to the mode

count by �1=2: For a free–free rod N ¼ kL=pþ 1=2 [20].

3.3. General boundary conditions

3.3.1. End spring

When the end of a beam is constrained against transverse displacement by an elastic spring of
stiffness K ; the amplitude reflection ratio, that is the ratio of the reflected wave amplitude to the
incident wave amplitude, can be expressed by [19]

r ¼ �
1� 2sþ j

1� 2s� j
¼ e jy where y ¼ tan�1

2s� 1

2sð1� sÞ

� �
; ð14Þ

with �p=2pypp; and s ¼ K=EIk3 is a non-dimensional stiffness coefficient, EI being the
bending stiffness of the beam. The phase change y at the boundary is frequency dependent.
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Consider a beam that is free at the left-hand end and has a point spring at the right-hand end.
The natural modes can be found from Eq. (6) by

kL ¼ n �
5

4

� �
pþ

y
2

for nX3 ð15Þ

when n has been chosen to include two rigid modes, one of which will have a non-zero frequency.
For s-N; y-p and this corresponds to a free–pinned beam. For s-0; y-� p=2 and this
corresponds to a free–free beam. By comparing Eq. (15) with that of a free–free beam, the effect
on the mode count of an end spring can be deduced as

dspring ¼
y
2p

þ
1

4
for �

p
2
pypp ð16Þ

dspring tends to 3/4 at low frequency and to zero at high frequency. This is illustrated in Fig. 3(a).

3.3.2. End mass
When the end of a beam is connected to a point mass, the reflection ratio is

r ¼ �
2mþ 1þ j

2mþ 1� j
¼ e jy where y ¼ tan�1

2mþ 1

2mðmþ 1Þ

� �
ð17Þ

and m ¼ mo2=EIk3 ¼ mk=rA is a non-dimensional coefficient, with rA the mass per unit length of
the beam.
The phase change due to an end point mass is again dependent on frequency. As f-0; m-0;

which corresponds to a free boundary condition. As f-N; m-N; which corresponds to a
pinned boundary condition. However, it is found that y moves through the third quadrant of the
complex plane by �p=2 as frequency increases. This is different from the end spring where the
total phase change is �3p=2:
For a beam that is free at the left-hand end and has a point mass at the right-hand end, similar

to the case of an end spring, Eq. (15) again applies. The effect of an end mass on the mode count
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can therefore be obtained by

dmass ¼
y
2p

þ
1

4
for � ppyp�

p
2

ð18Þ

dmass tends to zero at low frequency and tends to �1=4 at high frequency. This is illustrated in
Fig. 3(b). It should be noted that d for an end point mass is less than zero. This means that a mass
is able to add to the mode count of a beam because it tends to lower the natural frequencies
compared with a free end.
These two examples have shown that dBC need not be constant with frequency.

4. Two-beam system

In this section, the corresponding relationship for a beam of length 2L with simple supports at
the two ends and an intermediate constraint (Fig. 4) will be discussed.

4.1. A beam with an intermediate fixed constraint

If the extra constraint on the simply supported beam is a fixed condition, the system is then
divided exactly into two independent single beams with pinned–fixed boundary conditions. The
average mode count for the whole system, Ntotal ; can be obtained by adding the two mode counts
for the single beams

Ntotal ¼
kL1

p
�

3

4

� �
þ

kL2

p
�

3

4

� �
¼

2kL

p
�

1

2

� �
� 1 ¼ N � 1; ð19Þ

where N is the mode count of the original beam of length 2L without the extra intermediate
constraint. This shows that the mode count of the whole system can be estimated by taking the
mode count of the system without the extra constraint and subtracting the coefficient dfixed ¼ 1
due to the fixed boundary condition. A similar result is found for the trivial case of a ‘‘free’’
intermediate boundary, for which dfree ¼ 0:

4.2. A beam with an intermediate simple support constraint

4.2.1. General solution of natural modes

Consider an intermediate constraint that is a simple support. Define tm and rm as the amplitude
transmission and reflection coefficients at this middle simple support and write L1 ¼ L � l; L2 ¼
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L þ l; a ¼ e�2kLj and b ¼ e�2klj: Then it can be shown by a simple analysis that

ð1þ rma=bÞð1þ rmabÞ ¼ t2ma
2 ð20Þ

tm and rm can be obtained by considering the continuity at the middle constraint. By a simple
wave analysis, it is found that the amplitude transmission and reflection coefficients of a simple
support are given by [21]

tm ¼
1

1þ j
; rm ¼

�1
1� j

: ð21Þ

Now substituting tm and rm into Eq. (20) and rearranging it, noting that 1=bþ b ¼ 2 cosð2klÞ;
gives

a2 � ð1� jÞcosð2klÞa� j ¼ 0: ð22Þ

The roots of Eq. (22) have the form

a ¼ e�2kLj ¼
1� j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð2klÞ

q
7
1þ j

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2klÞ

q
: ð23Þ

Eq. (23) is an irrational equation in k that gives a general solution for the natural frequencies of
the two connected beams with simple support constraints. It can be noted that two sets of modes
occur in the system, signified by the 7 sign.

4.2.2. Two identical beams

First, the situation is considered in which the extra constraint is located at the centre. In this
case, l ¼ 0 and the roots can be expressed as

a1 ¼ 1 and a2 ¼ �j: ð24Þ

The first root gives kL ¼ np: These are exactly the modes of a pinned–pinned beam of length L:
In these modes, the two beams vibrate in antiphase. This corresponds to a mode count
N1 ¼ kL=p� 1

2
: The second root gives kL ¼ ðn þ 1

4
Þp: These are the modes of a fixed–pinned beam.

In these modes the two beams vibrate in phase. This corresponds to a mode count N2 ¼ kL=p� 3
4
:

The total mode count of the system, Ntotal ; can be estimated by adding the two sets of modes
together

Ntotal ¼ N1 þ N2 ¼
2kL

p
�

1

2
�

3

4
¼ N �

3

4
; ð25Þ

where N1 and N2 are the mode counts of the antisymmetric and symmetric modes respectively
and N is the mode count of the beam of length 2L without the extra intermediate
constraint.
It is thus shown that the mode count of the whole system can be estimated by taking the mode

count of the system without the extra constraint and subtracting the coefficient dpinned ¼ 3=4 due
to the simple support boundary condition. This is the same as for the case of the fixed support in
Section 4.1.
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4.2.3. Asymmetrical simple support

An asymmetrical intermediate simple support represents a more general case. The two roots in
Eq. (23) can be expressed as

a1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð2klÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2klÞ

q
2

þ j
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð2klÞ

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2klÞ

q
2

0
@

1
A;

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð2klÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2klÞ

q
2

þ j
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2ð2klÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2ð2klÞ

q
2

0
@

1
A: ð26Þ

Note that these two roots are related. Writing a1 ¼ a þ jb; a2 can be represented as a2 ¼ �b � ja;
where a and b are both positive. These two roots have the same modulus but different phase. It
can be readily shown that the modulus is 1 in each case. Therefore the two roots can be
represented as a1 ¼ e jf1 ; a2 ¼ e jf2 ; where 0pf1pp=2 and �ppf2p� p=2: The phases are
related by

f1 þ f2 ¼ �
p
2
: ð27Þ

Following the procedure taken in Section 4.2.2, the first root gives kL ¼ np� f1=2 and the second
root gives kL ¼ np� f2=2: The total mode count of the system can be estimated by adding the
two sets of modes together

Ntotal ¼
2kL

p
�

1

2
þ

f1 þ f2

2p

� �
�

1

2
¼ N �

3

4
: ð28Þ

This shows that the average mode count of the whole system can be estimated in the same way as
in Section 4.2.2. The mode count of the system without the extra constraint is found and the
coefficient due to the simple support boundary condition, dpinned ¼ 3=4; is subtracted. It can be
similarly shown that for an intermediate sliding support Ntotal ¼ N � dsliding; where dsliding ¼ 1=4:

4.3. A beam with a general intermediate constraint

4.3.1. Intermediate point mass

Suppose that a point mass m is applied at an intermediate position between the two ends of the
system. The amplitude transmission and reflection coefficients will become frequency dependent
[22]

tm ¼
ð4þ mÞj

ð4þ mÞj� m
; rm ¼

m
ð4þ mÞj� m

; ð29Þ

where m ¼ mo2=EIk3 ¼ mk=rA as before. When frequency is very low, m tends to zero, tm-1
and rm-0: This means that there is no constraint applied. Waves will propagate through the
mass without reflection. When frequency is very high, m tends to infinity, tm-1=ð1þ jÞ and
rm-1=ð j� 1Þ: This is equivalent to the case of a simple support constraint (see Section 4.2).
Eq. (20) can be simplified if the two beams are identical in length since b ¼ 1: In this case,

ðr2m � t2mÞaþ 2rmaþ 1 ¼ 0: ð30Þ
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Thus the roots of Eq. (30) are

a1 ¼ �
1

rm þ tm

and a2 ¼ �
1

rm � tm

: ð31Þ

Substituting Eq. (29) in this gives

a1 ¼
m� ð4þ mÞj
mþ ð4þ mÞj

and a2 ¼ 1: ð32Þ

It may be noted from this that one set of modes (the antisymmetric modes) will always be the
modes of a pinned–pinned beam of length L whereas the other set of modes will depend on the
mass and on frequency. The first root gives

e�2kLj ¼
m� ð4þ mÞj
mþ ð4þ mÞj

¼ e jf ¼ e�ð2np�fÞj; where f ¼ tan�1
mð4þ mÞ
4ðmþ 2Þ

� �
ð33Þ

with ppfp3p=2: So the natural modes are governed by kL ¼ np� f=2 and the mode count for
this set of modes is (from Eq. (3))

N1 ¼
kL

p
�

1

2
þ

f
2p

: ð34Þ

The second root gives

N2 ¼
kL

p
�

1

2
: ð35Þ

The total mode count of the system can be estimated by adding that for the two sets of modes
together

Ntotal ¼ N1 þ N2 ¼
kL

p
�

1

2
þ

f
2p

� �
þ

kL

p
�

1

2

� �
¼ N þ

f
2p

�
1

2
: ð36Þ

Therefore, the effect of an intermediate mass on the mode count of the system can be obtained by

d ¼
1

2
�

f
2p

; ppfp
3p
2

ð37Þ

For m-0; f-p and d-0; for m-N; f-3p=2 and d-� 1=4: This is the same as the case of a
mass at the ends of the beams described in Section 3.3. However, it must be indicated that d for a
mass at the ends of the beams is different from that at an intermediate point at a specific
frequency, although they have same asymptotic behaviour. It can be shown that dmass for an
intermediate mass is equivalent to dmass for an end mass in which m is replaced by m=4: Note also
that y and f in Eqs. (17), (18) and (33), (37) are not equivalent although dmass is, apart from this
change of m to m=4:
The intermediate point mass has a similar effect to that of a point mass applied at the end of a

beam, which is discussed in Section 3.3. The difference in the mode count between a beam with
and without an intermediate point mass is frequency dependent. The mode count of the system
with an intermediate point mass can be expressed by Ntotal ¼ N � dmass where N is the mode count
of the beam without the intermediate mass and dmass is a frequency-dependent parameter between
0 and �1=4 as described in Eq. (37).
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4.3.2. Intermediate point spring

For an intermediate point spring K ; the transmission and reflection ratios are readily obtained
by considering the continuity conditions as [22]

tm ¼
ð4� sÞj

ð4� sÞjþ s
; rm ¼

�s
ð4� sÞjþ s

; ð38Þ

where s ¼ K=EIk3 as before. It can be found that an intermediate point spring has the same effect
on the wave propagation as the end point spring discussed in Section 3.3.
The solution of the natural modes can be found as

a1 ¼
sþ ð4� sÞj
s� ð4� sÞj

and a2 ¼ 1: ð39Þ

It can be seen from this that, in a similar fashion to that of the mass constraint, one set of modes
will always be the modes of a pinned–pinned beam whereas the other set of modes will depend on
the stiffness and on frequency.
The total mode count of the system can be found to correspond to Eq. (36) but in this case,

f ¼ tan�1ðsð4� sÞ=4ðs� 2ÞÞ with �p=2pfpp: The phase change is from �p=2 at low
frequencies to p at high frequencies. Therefore, the effect of an intermediate spring on the mode
count of the system can be obtained by

d ¼
1

2
�

f
2p

; �
p
2
pfpp: ð40Þ

For s-N; f-� p=2 and d-3=4; for s-0; f-p and d-0: This is the same as the case of a
spring at the ends of the beams described in Section 3.3. As for the mass discussed above, there is
some difference in d between the case at an end and at an intermediate position. The two
expressions for dspring can be shown to be equivalent if K is replaced by K=4 in dspring for the end
spring.
Based on the analysis described in Sections 4.1–4.3, it can be concluded that the mode count of

a beam with an extra intermediate constraint is equal to the mode count of this beam without any
extra constraint, modified by a coefficient that depends only on the type of the constraint. These
coefficients are normally the same as those applying for constraints at the ends of the beams
described in Section 3. For a mass or a spring, the coefficients have a frequency-dependent effect,
which is the same as for an end constraint apart from a constant factor in the non-dimensionalised
mass or stiffness property.

5. Multi-beam system

The study is now briefly extended to the case of a multiple collinear beam system, with arbitrary
intermediate supports.

5.1. Intermediate fixed constraints

For the case of fully fixed intermediate constraints, the conclusions for the two-beam system
can readily be applied. If there are two simple supports at the ends and m � 1 fixed intermediate
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constraints are applied, the system can be regarded as two pinned–fixed beams and m � 2 fixed–
fixed beams all of length L: The mode count of the whole system can be calculated by

Ntotal ¼ Npinned–fixed;1 þ
Xm�1

i¼2

Nfixed–fixed;i þ Npinned–fixed;m ð41Þ

with

Npinned–fixed ¼
kL

p
�

3

4
; Nfixed–fixed ¼

kL

p
� 1; ð42Þ

where Npinned–fixed is the mode count of a pinned–fixed beam, Nfixed–fixed is the mode count of a
fixed–fixed beam and m is the number of beam segments of the system. This yields

Ntotal ¼
kL

p
�

1

2
� ðm � 1Þ ¼ N � ðm � 1Þdfixed ; ð43Þ

where N is the mode count of the long beam, length L ¼
P

Li; with simple supports at the two
ends and dfixed ¼ 1 as before.
Since fixed constraints separate the system into exactly uncoupled segments, the mode count for

the whole system can be represented by the mode count of a long beam minus the product of the
number of constraints ðm � 1Þ and the constraint coefficient d:

5.2. Intermediate simple supports

To provide an example of a multi-span beam with intermediate simple supports, a 10 segment
beam has been generated in a finite element (FE) model. The modal frequencies have then been
calculated using the FE method. The lengths of the segments were 20, 22, 18, 17, 23 20, 19, 25, 15
and 21 cm; giving a total length of 2 m: Fig. 5 shows the mode count of this system. The mode
count difference between the random multi-beam system and the average result for the long beam
is calculated and presented in Fig. 6. The average value is 6.8 which corresponds to 9dpinned ; with
dpinned ¼ 3=4:
This and other examples given in Ref. [20] therefore demonstrates, although without analytical

proof, that the mode count of a system of m arbitrary length multiple collinear beams can be
estimated by

Nrandom ¼ N � ðm � 1Þdpinned : ð44Þ

As for the two-beam systems, an intermediate constraint has the same effect on the average mode
count as the same type of constraint applied at an end.

6. Mode count of rectangular plates

The number of modes of a rectangular plate with wavenumber less than a given value of k is
given by Hart and Shah [11] and Cremer et al. [13] as

N ¼
k2S

4p
; ð45Þ
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Fig. 6. Mode count difference between the random multi-beam system and the result for the long beam (——). The

average value is 6.8 (– – –).

Fig. 5. Mode counts of multi-beam systems (—— 2 m beam, thick line: 2 m beam with 10 arbitrary length spans, – – –

average mode count).
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where N is the mode count, k is wavenumber and S is the area of the plate under consideration.
Lyon and DeJong [15] extend this by writing

NC
k2S

4p
þ GBCPk; ð46Þ

where P is the perimeter length and GBC depends on the boundary conditions. The modal density
of the system can be obtained by the differentiation of Eq. (46). This yields a term of G0

BC in the
expression of the modal density. It is suggested in Ref. [15] that although the quantity G0

BC can
often be determined for an isolated system, it is best to assume it to be zero for connected systems
because the effective boundary conditions change with frequency. However, in this section an
approximate expression for G0

BC will be obtained.

6.1. Natural modes and mode count

The flexural wave equation of motion of a plate of thickness h is given by

B
@4w

@x4
þ 2

@4w

@2x @2y
þ

@4w

@y4

� �
þ rh

@2w

@t2
¼ 0; ð47Þ

where B ¼ Eh3=12ð1� n2Þ is the flexural rigidity with E; Young’s modulus and n; the Poisson
ratio, r is the density and w is the out-of-plane displacement. The harmonic plane wave solution
has the form

wðx; y; tÞ ¼ e�jkxxe�jkyye jot; ð48Þ

where kx and ky are the trace wavenumbers in the x and y directions.
For a finite plate, natural modes will occur due to the wave reflections at the boundaries.

Considering a rectangular plate of dimensions a and b as shown in Fig. 7, as for the case of a
beam, the phase-closure principle can be applied to it to find the natural modes. By ignoring the
effect of nearfield waves across the plate, i.e., assuming that a nearfield wave generated at one edge
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Fig. 7. Illustration of the rectangular plate under consideration.
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will have negligible effect at another, the natural modes will occur when

2kxa þ fL þ fR ¼ 2mp; ð49Þ

2kyb þ fT þ fB ¼ 2np; ð50Þ

where fL; fR are the phase changes at the boundaries for the x direction and fT ; fB for the y
direction, and m; n are integers. This corresponds to Bolotin’s asymptotic method [23], see also
Ref. [24]. The natural mode ðm; nÞ can be found from

k2 ¼ k2
x þ k2

y ¼
mp
a

�
fL þ fR

2a

� �2

þ
np
b
�

fT þ fB

2b

� �2

; ð51Þ

where k ¼ ðrho2=BÞ1=4:
These natural modes can also be plotted in the wavenumber domain, ‘k-space’, as illustrated in

Fig. 8. Each point corresponds to a mode ðm; nÞ: The trace or component wavenumbers in the two
directions are given by

kx ¼
mp
a

�
fL þ fR

2a
; ky ¼

np
b
�

fT þ fB

2b
: ð52Þ

It can be seen that the variation of the trace wavenumber from one mode to the next is constant,
namely p=a and p=b for constant fL; fR; etc. The boundary conditions effectively only influence
the distance to the axes, not the separation between points. This characteristic is very useful,
allowing the use of k-space integration to calculate the mode count of a rectangular plate. These
observations are, however, only approximate due to the neglect of nearfield waves across the
plate. In an exact analysis the boundary conditions would distort the grid of points in k-space as
well as shift them relative to the axes.
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Fig. 8. Illustration of the k-space of the natural modes of a rectangular plate.
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6.1.1. Simply supported plate

If all four edges of the plate are simply supported, the phase change at each edge is p: The
phase-closure principle gives

kxa ¼ mp;

kyb ¼ np: ð53Þ

The natural frequencies are given by

omn ¼
B

rh

� �1=2
mp
a

� 
2
þ

np
b

� 
2� �
; ð54Þ

which in this case is exact.
The k-space plot of the modes is presented in Fig. 9(a). The mode count below a particular

frequency can be obtained by finding the number of modes located within the quarter circle of
radius k: This is given by

NðkÞ ¼

R
S
dkxdky

DkxDky

; ð55Þ
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Fig. 9. The modes of a rectangular plate shown in k-space: (a) simply supported, (b) fully fixed, (c) free and (d) two

opposite edges simply supported (solid square: beam-mode like mode, open square: rigid mode, solid circle: plate

mode).
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where S is the area of integration, Dkx and Dky are the changes in trace wavenumber from one
mode to the next. Eq. (55) can be evaluated as

NðkÞ ¼

R k

0

R p=2
0 kdydk

DkxDky

¼
1
4
pk2

DkxDky

: ð56Þ

In considering the average area occupied by each mode in k-space, it can be noted that each mode
occupies an area of p=a � p=b: However, the area of two strips along the axes should not be taken
into account by integration of Eq. (56). This is illustrated in Fig. 9(a) by the shaded region.
Therefore, the average mode count below wavenumber k is given by a modification of Eq. (56)

NðkÞ ¼
1
4
pk2 � k p

2a
þ p

2b

� �
þ p

2a
p
2b

� �
DkxDky

; ð57Þ

where Dkx and Dky are given by p=a and p=b: Hence, the mode count for a simply supported
rectangular plate can be given by

NðkÞ ¼
k2S

4p
�

1

2
k

a þ b

p

� �
þ
1

4
ð58Þ

or

NðkÞ ¼
k2S

4p
�

1

4p
kP þ

1

4
; ð59Þ

where P ¼ 2ða þ bÞ is the perimeter of the plate and S ¼ ab is its area. The first term in Eq. (59) is
that often used in the literature to estimate the mode count for a plate. It can be seen that the
result of the mode count for a simply supported plate from Eq. (59) is less than that from Eq. (45)
due to the inclusion of a perimeter term.
Bogomolny and Hugues [16] give this perimeter term as

Np ¼ b
L

4p
k; ð60Þ

where b ¼ �1 for the simply supported plate. It can be seen that Eq. (59) gives the same results as
those from Eq. (60).

6.1.2. Fully fixed plate

The natural modes of a fully fixed rectangular plate occur approximately when the
wavenumbers satisfy

kxa ¼ m þ 1
2

� �
p; kyb ¼ n þ 1

2

� �
p; ð61Þ

where m; n ¼ 1; 2; 3;y: The k-space plot of the natural modes is presented in Fig. 9(b). Based on
Eq. (56) and the concept of the average mode count, the mode count for a fully fixed rectangular
plate can be given by

NðkÞ ¼
1
4
pk2 � k p

a
þ p

b

� �
þ p

a
p
b

� �
p
a
p
b
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or

NðkÞ ¼
k2S

4p
�

1

2p
kP þ 1: ð62Þ

In terms of Eq. (60), Bogomolny and Hugues [16] give b ¼ �1:7628 for a fully fixed plate. From
Eq. (62), the present approximate analysis has given b ¼ �2:

6.1.3. Free plate

For a plate with four free edges, three rigid modes should be included. These consist of
translation, rotation about the x direction and rotation about y direction. A fourth low frequency
mode (not a bending mode) exists in which the plate flexes with opposite corners moving in phase.
The remaining natural modes should satisfy approximately

kxa ¼ m � 3
2

� �
p; kyb ¼ n � 3

2

� �
p ð63Þ

where m; n ¼ 3; 4;y :
Corresponding to a rigid mode in one direction, either translation or rotation, a set of beam-

like modes occur in the other direction. These beam modes have a similar modal characteristic to
a one-dimensional system except for a small effect of the Poisson ratio. The plate modes,
therefore, should include two sets of beam modes in each direction corresponding to the rigid
modes in the other direction. This can be shown in a k-space plot as in Fig. 9(c). The two sets of
beam modes, and the four rigid modes, have been plotted for convenience at kx ¼ 7p=2a or
ky ¼ 7p=2b; although their wavenumbers are actually zero.
The average mode count hence can be given by evaluating the shaded area, i.e.,

NðkÞ ¼
1
4
pk2 þ k p

a
þ p

b

� �
þ p

a
p
b

� �
p
a
p
b

ð64Þ

or

NðkÞ ¼
k2S

4p
þ

1

2p
kP þ 1: ð65Þ

In terms of Eq. (60), Bertelsen et al. [17] give b ¼ 1:7126 for a free plate. From Eq. (65), b is
approximately given as 2.

6.1.4. Plate with two opposite edges simply supported
Considering a plate having only two opposite edges x ¼ 0 and a with simple supports, the other

two edges, y ¼ 0 and b; being free, the natural modes should satisfy approximately

kxa ¼ mp; kyb ¼ ðn � 3=2Þp; ð66Þ

where m and n are integers starting from 1 and 3, respectively.
Since the two edges y ¼ 0 and b are free, two rigid modes will occur in the y direction, n ¼ 1; 2:

These two rigid modes correspond to two sets of the simply supported beam modes for
the x direction of the plate. This is shown in a k-space plot, Fig. 9(d). All the shaded area must be
taken into account for calculating the mode count. The expression of the average mode count is
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given by

NðkÞ ¼
1
4 pk2 � k p

2a
þ kp

b
� p

2a
p
b

� �
p
a
p
b

;

thus

NðkÞ ¼
k2S

4p
�

1

2
k

b

p
þ k

a

p
�

1

2
: ð67Þ

This shows that the free edges of length a increase the mode count, while the simply supported
edges of length b reduce it, compared with Eq. (45).

6.2. Verification

To verify the result of Eqs. (59), (62), (65) and (67), an aluminium plate of dimensions 0:4�
0:3� 0:002 m3 is considered. The natural modes are calculated based on equations from Leissa
[25] and then the staircase function of the mode count is plotted. The average mode counts from
Eq. (45) are also calculated and plotted for the purpose of comparison.
Fig. 10 presents the case of the simply supported plate. The differences between the results from

Eq. (59), (45) and the actual mode count are plotted in Fig. 11. The values of the actual mode
count are given at each resonance frequency by the top stair point minus 0.5 in each case
(see Section 2). The average difference between the results from Eq. (59) and the actual value is
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Fig. 10. The mode count for a simply supported plate (—, stair-case; – – –, including perimeter term, Eq. (59); – � –,
excluding perimeter term, Eq. (45)).
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only �0:043: However, Eq. (45) has a systematic error increasing as frequency increases (although
the relative error reduces as seen in Fig. 10).
Figs. 12 and 13 present the case of the fully fixed plate. It can be seen that Eq. (62) gives much

better agreement with the staircase function than Eq. (45). The errors of Eq. (62) are caused by
approximations made in the phase-closure principle from which it is derived. Due to ignoring the
nearfield waves in using the phase-closure principle to obtain the natural modes, the solutions of
the first few modes and all modes with m ¼ 1 or n ¼ 1 tend to have larger values than those from
the exact solution. This eventually causes an underestimate of the mode count Eq. (62) by 2 or 3 at
high frequencies. The result based on b ¼ �1:7628; given by Bogomolny and Hugues [16],
Eq. (60) gives a better agreement at high frequencies.
Figs. 14 and 15 present the results for the free plate and the plate with two opposite edges

simply supported. These also support the above analysis, although the approximate result derived
for the free plate slightly overestimates the mode count.

6.3. Relationship between mode count and boundary conditions

From Section 6.2 above, it has been seen that the mode count of a plate is not independent of
boundary conditions. Using Eq. (45) to evaluate the mode count of a plate may cause a
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Fig. 11. Difference between the estimated mode count and the actual one for a simply supported plate (—, difference

between estimate from Eq. (59) and actual one; – – –, corresponding difference omitting perimeter terms, based on

Eq. (45)).
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considerable error. The formulae based on the phase-closure principle and the k-space plot for the
four combinations of boundary conditions, although approximate, have presented a more
accurate result. It can also be seen that the k-space plot for the mode count of a rectangular plate,
under any combination of boundary conditions, is effectively a shift of the mode lattice that
depends only on the dimensions. By observing Eqs. (58), (62), (65) and (67), the general expression
for the mode count of a rectangular plate can be written as

NðkÞ ¼
k2S

4p
þ dx

kb

p
þ dy

ka

p
� D; ð68Þ

where dx and dy are the boundary effects for waves propagating in the x and y directions and D is
a small constant.
Actually dx and dy include the effects from two opposite edges in their own directions. Because

all examples used previously are symmetric in this respect, it is reasonable to anticipate that half
the value of dx or dy will be the boundary effect of one edge. Following the method used for the
beam and considering the free plate as a basis for comparison, the effect of each boundary can be
obtained. The constant term D will be ignored because it is very small. The approximate mode
count for a free rectangular plate is hence given by

NðkÞ ¼
k2S

4p
þ

kb

p
þ

ka

p
: ð69Þ
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Fig. 12. The mode count for a fully fixed plate (—, stair-case; – – –, including perimeter term, Eq. (62); – � –, excluding
perimeter term, Eq. (45)).
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Comparing Eqs. (67) and (69), the effect due to the simple supports on the each edge x ¼ 0 and a
is given by

dx-pinned ¼ �
3

4

kb

p
; ð70Þ

where b is the length of the edge concerned. It is noted that the coefficient in the above expression
(3/4) is equal to the constant effect of a simple support on the mode count of one-dimensional
systems. By further comparing the case of a plate simply supported on four edges with the free
plate, the effect due to a simple support on one edge y ¼ 0 and b can be given as

dy-pinned ¼ �
3

4

ka

p
: ð71Þ

Similarly, by comparing the case of a fully fixed plate with that of a free plate, the effect of a fixed
condition on one edge can be given as

dx-fixed ¼ �
kb

p
; dy-fixed ¼ �

ka

p
: ð72Þ

The constant coefficients in Eq. (72) also correspond to the result for a fixed condition for one-
dimensional systems (1).
Based on the above derivations, it is straightforward to conclude that the effect of a line

constraint on the mode count of a rectangular plate is equal to the product of the constant
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Fig. 13. Difference between the estimated mode count and the actual one for a fully fixed plate (—, difference between

estimate from Eq. (62) and actual one; thick line, corresponding difference using Eq. (60); – – –, corresponding

difference omitting perimeter terms, based on Eq. (45)).
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effect of the same type of constraint in a one-dimensional beam and a frequency-dependent
term, which depends on the dimensions and the dispersion relation of the plate. This can be
represented by

d2-D ¼ d1-D
kLedge

p
; ð73Þ

where d1-D corresponds to the boundary effect in one-dimensional systems and Ledge is the length
of the line constraint.
Summarising, the mode count of a rectangular plate can be given by

NðkÞ ¼
k2S

4p
þ ð1� dx-left � dx-rightÞ

kb

p
þ ð1� dy-top � dy-bottomÞ

ka

p
; ð74Þ

where dx-left; dx-right; dy-top and dy-bottom are the one-dimensional boundary effect terms
corresponding to the boundary conditions of the four edges. This expression has also been
verified for other combinations of boundary conditions.

7. A plate with intermediate line constraints

Following the conclusion in Sections 4 and 5 that, for one-dimensional systems, an intermediate
constraint has the same effect on the average mode count as the same type of constraint applied at
an end, it can be anticipated that an intermediate line constraint will have the same effect as the
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Fig. 14. The mode count for a free plate (—, stair-case; – – –, including perimeter term, Eq. (65); – � – �; excluding
perimeter term, Eq. (45)).
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same type of line constraint applied at an edge for two-dimensional systems. If a simply supported
rectangular plate is considered with one or more intermediate line simple supports applied, the
average mode count of such a system can be given by

NtotalðkÞ ¼ NðkÞ � mdBC ; ð75Þ

where NtotalðkÞ is the average mode count of the whole system, NðkÞ is the average mode count
without considering the intermediate constraints, given by Eq. (74), m is the number of applied
intermediate constraints and dBC is the line boundary effect of a simple support on the mode
count that is determined by Eq. (73).
To verify Eq. (75), two examples are studied. The first is a simply supported plate of dimensions

0:4� 0:3� 0:002 m3 with another line simple support applied along the y direction at x ¼ 0:16 m:
The second is the same plate with two line simple supports applied at x ¼ 0:16 and 0:27 m: The
position of the line constraint in both cases is arbitrarily chosen. The average mode count of the
first example should be given by

NtotalðkÞ ¼ NðkÞ � dx-pinned ; ð76Þ

where NðkÞ is given by Eq. (58) and dx-pinned ¼ 3
4

kb=p: The average mode count of the second
example should be given by

NtotalðkÞ ¼ NðkÞ � 2dx-pinned : ð77Þ

Since analytical solutions of the natural frequencies for such systems are not available, an FE
modal analysis is used to obtain numerical results. Then the estimated results from Eqs. (76) and
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Fig. 15. The mode count for a plate with two opposite edges free and others simply supported plate (—, stair-case;

– – –, including perimeter term, Eq. (67); – � – �; excluding perimeter term, Eq. (45)).
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(77) are compared with those from the FE analysis, as shown in Figs. 16 and 17. It can be seen
that the estimated values have a good agreement with the results from the FE analysis.

8. Modal density

8.1. Modal density of one-dimensional systems

The asymptotic modal density of a one-dimensional system can be found from the derivative of
the average mode count function. For a single one-dimensional system, the derivative of Eq. (4)
gives

nðoÞ ¼
dN

dk

dk

do
¼

L

pcg

�
ddBC

do
; ð78Þ

where cg is the group velocity.
For basic boundary conditions, dBC is constant, as shown in Section 3.2 so that the modal

density is independent of the boundary conditions. This also applies to multiple collinear beam
systems. In general, therefore, the modal density of one-dimensional systems is proportional to
the length of the systems and is independent of boundary conditions, provided that dBC is
constant. However, it will be noted that mass or stiffness boundary conditions have a frequency-
dependent dBC and therefore an influence on the modal density.
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Fig. 16. The mode count for a simply supported plate with one intermediate simple support (—, stair-case from FE

model; – – –, estimate from Eq. (76); – � –, result without intermediate support, NðkÞ).
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8.2. Modal density of rectangular plates

For a two-dimensional system, the modal density can be similarly obtained through the
derivative of the average mode count. Hence, in terms of frequency, the modal density of a
rectangular plate is given by

nðoÞ ¼
@NðoÞ
@o

¼
S

4p

ffiffiffiffiffiffi
m00

B

r
þ
1

2

m00

B

� �1=4

�
ð1� dx-left � dx-rightÞb

p
þ

ð1� dy-top � dy-bottomÞa
p

� �
o�1=2 ð79Þ

where m00 ¼ rh: It can be seen from Eq. (79) that the modal density of the plate is frequency
dependent. The first term is the constant term that is given in most literature

nðoÞ ¼
S

4p

ffiffiffiffiffiffi
m00

B

r
: ð80Þ

This depends only on the material, thickness and area of the plate under consideration. The
second term in Eq. (79) is frequency dependent and contains information on the geometric
characteristics of the plate. It becomes smaller and less important as frequency increases so that
the modal density tends to a constant at high frequency.
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Fig. 17. The mode count for a simply supported plate with one intermediate simple support (—, stair-case from FEM;

– – –, estimate from Eq. (77); – � – �; result without intermediate support, NðkÞ).

G. Xie et al. / Journal of Sound and Vibration 274 (2004) 621–651 647



According to Eq. (79), the modal density of a simply supported plate can be given by

nðoÞ ¼
S

4p

ffiffiffiffiffiffi
m00

B

r
�

1

4

m00

B

� �1=4
a þ b

p

� �
o�1=2 ð81Þ

the modal density of a free plate can be given by

nðoÞ ¼
S

4p

ffiffiffiffiffiffi
m00

B

r
þ
1

2

m00
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and the modal density of a fully fixed plate can be given by
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From the above three equations it can be noted that the modal density of the plate can be either
larger or smaller than the constant value from Eq. (80). Taking the plate investigated in Section
6.2 as an example, the results of the above equations for the modal densities of a simply
supported, a fully fixed and a free plate are shown in Fig. 18 (N.B. results are plotted as
nð f Þ ¼ 2pnðoÞ). It can be seen that Eq. (80) can only represent the true modal density well at high
frequencies. Although the first mode of this simply supported plate occurs below 100 Hz; even at
1000 Hz the error can be as much as 13%. For the cases of the free and fully fixed plate, the
corresponding errors at 1000 Hz are 26%.
The modal density can also be obtained directly by counting the number of modes in a band

from the analytical results. Fig. 19 shows the results counted in overlapping octave bands for a
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Fig. 18. Modal density of a plate 0:4� 0:3� 0:002 m3 (solid: Eq. (80); – � –, simple support; – – –, free; ?; fixed).
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simply supported plate. It can be seen that the result from octave bands agrees better with the
curve from Eq. (81) and converges to the constant determined by Eq. (80) only at high
frequencies. Fig. 20 presents equivalent results for the free plate. The same phenomenon as for the
simply supported plate can be observed.

9. Conclusions

The mode count of one- and two-dimensional structural systems has been investigated. A
simple relationship has been shown between the mode count and the boundary conditions for
one-dimensional systems. For bending vibrations, a sliding constraint adds to the mode count by
�1=4; a simple support condition by �3=4 and a fixed boundary constraint by �1 compared with
a free boundary. For longitudinal vibrations, a fixed boundary constraint adds to the mode count
by �1=2: For more general boundary conditions, in particular a point mass and a point spring,
the boundary condition effect on the mode count is frequency dependent.
For multi-beam systems in a single line, the mode count of the system can be estimated by the

mode count of a long beam without any extra constraints minus the sum of the constraint
coefficients. An intermediate constraint has the same effect on the average mode count of a one-
dimensional system as the same type of constraint applied at an end.
Line constraints have systematic effects on the mode count of a two-dimensional system. The

effect depends on the type of the boundary condition, as well as the geometric and material
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Fig. 19. Modal density of the simply supported plate 0:4� 0:3� 0:002 m3 (solid: Eq. (80) omitting boundary effects;

– – – Eq. (81) including boundary effects; circle, counted from analytical results in overlapping octave bands).
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properties of the system. The results follow on from those for the same type of boundary in a one-
dimensional system. Approximate theoretical expressions used to estimate the mode count of a
two-dimensional system have been obtained. The results from these estimated formulae have
shown the limitation of the commonly used formula, in which the effects of the boundary
conditions are neglected.
For a composite two-dimensional system, an intermediate line constraint has the same effect on

the mode count as the equivalent constraint applied on an edge. The average mode count of such
a composite system can be estimated by that of the system without intermediate constraints minus
the product of the number of the constraints, the constraint effect dBC and the term kL=p; where k
is the wavenumber and L is the length of the constrained edges.
Theoretical expressions have been obtained for the modal density of a two-dimensional system

including boundary effects. The modal density of the rectangular plate is a frequency-dependent
parameter, which depends on geometric information and the dispersion relation of the plate under
consideration. However, at high enough frequency, the modal density tends to a constant value,
which is determined only by the area of the plate and dispersion relation and is independent of the
boundary conditions.
Although in practice it is not possible to analyse in detail all the various combinations of

boundary conditions, the analyses for the most basic boundary conditions presented in this paper
are expected to provide enough general insight to permit some sorts of complicated structure
comprising many small beams or plates to be dealt with in applications of SEA.
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Fig. 20. Modal density of the free plate 0:4� 0:3� 0:002 m3 (solid: Eq. (80) omitting boundary effects; – – –, Eq. (82)

including boundary effects; circle, counted from analytical results in overlapping octave bands).

G. Xie et al. / Journal of Sound and Vibration 274 (2004) 621–651650



References

[1] Lord Rayleigh, The Theory of Sound, 2nd Edition (reprinted) by Dover, New York, 1945.

[2] P.M. Morse, Vibration and Sound, McGraw-Hill, New York, 1936 (Chapter VIII).

[3] D.Y. Maa, Distribution of eigentones in a rectangular chamber at low frequency range, Journal of the Acoustical

Society of America 10 (1939) 235–238.

[4] R.H. Bolt, Frequency distribution of eigentones in a three-dimensional continuum, Journal of the Acoustical

Society of America 10 (1939) 228–234.

[5] G.M. Roe, Frequency distribution of normal modes, Journal of the Acoustical Society of America 13 (1941) 1–7.

[6] P.M. Morse, R.H. Bolt, Sound waves in rooms, Reviews of Modern Physics 16 (1944) 69–150.

[7] R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience Publishers, Inc., New York, 1953.

[8] R.H. Lyon, Statistical Energy Analysis of Dynamical Systems, MIT Press, Cambridge, MA, 1975.

[9] J.P.D. Wilkinson, Modal densities of certain shallow structural elements, Journal of the Acoustical Society of

America 43 (1967) 245–251.

[10] I. Elishakoff, Distribution of natural frequencies in certain structural elements, Journal of the Acoustical Society of

America 57 (1975) 361–369.

[11] F.D. Hart, K.C. Shah, Compendium of modal densities for structures, NASA Contractor Report, CR-1773, 1971.

[12] M. Heckl, Vibrations of point-driven cylindrical shells, Journal of the Acoustical Society of America 34 (1962)

1553–1557.

[13] L. Cremer, M. Heckl, E.E. Ungar, Structure-borne Sound, 2nd Edition, Springer, Berlin, 1988.

[14] R.S. Langley, The modal density of anisotropic structural components, Journal of the Acoustical Society of

America 99 (6) (1996) 3481–3487.

[15] R.H. Lyon, R.G. DeJong, Theory and Application of Statistical Energy Analysis, Butterworth-Heinemann,

London, 1995, pp. 136–137.

[16] E. Bogomolny, E. Hugues, Semiclassical theory of flexural vibrations of plates, Physical Review 57 (5) (1998)

5404–5424.

[17] P. Bertelsen, C. Ellegaard, E. Hugues, Distribution of eigenfrequencies for vibrating plates, The European Physical

Journal B 15 (2000) 87–96.

[18] D.G. Vasil’ev, Asymptotics of the spectrum of a boundary value problem, Transactions of Moscow Mathematics

Society 49 (1987) 173–245.

[19] D.J. Mead, Waves and modes in finite beams: application of the phase-closure principle, Journal of Sound and

Vibration 171 (5) (1994) 695–702.

[20] G. Xie, D.J. Thompson, C.J.C. Jones, Investigation of the mode count of one-dimensional systems, ISVR

Technical Memorandum No: 882, 2002.

[21] D.J. Mead, Structural wave motion, in: R.G. White, J.G. Walker (Eds.), Noise and Vibration, Ellis Horwood

Publishers, UK, 1982 (Chapter 9).

[22] D.J. Mead, Passive Vibration Control, Wiley, Chichester, UK, 2000.

[23] V.V. Bolotin, Random Vibrations of Elastic Systems, Martinus Nijhoff, The Hague, 1984.

[24] R.S. Langley, An elastic wave technique for the free vibration analysis of plate assembles, Journal of Sound and

Vibration 145 (2) (1991) 261–277.

[25] W. Leissa, Vibration of Plates, National Aeronautics and Space Administration, Washington, DC, 1969.

ARTICLE IN PRESS

G. Xie et al. / Journal of Sound and Vibration 274 (2004) 621–651 651


	Mode count and modal density of structural systems: relationships with boundary conditions
	Introduction
	Average mode count
	Single one-dimensional system
	Use of phase-closure principle
	Bending modes in a beam
	General boundary conditions
	End spring
	End mass


	Two-beam system
	A beam with an intermediate fixed constraint
	A beam with an intermediate simple support constraint
	General solution of natural modes
	Two identical beams
	Asymmetrical simple support

	A beam with a general intermediate constraint
	Intermediate point mass
	Intermediate point spring


	Multi-beam system
	Intermediate fixed constraints
	Intermediate simple supports

	Mode count of rectangular plates
	Natural modes and mode count
	Simply supported plate
	Fully fixed plate
	Free plate
	Plate with two opposite edges simply supported

	Verification
	Relationship between mode count and boundary conditions

	A plate with intermediate line constraints
	Modal density
	Modal density of one-dimensional systems
	Modal density of rectangular plates

	Conclusions
	References


